SEGUNDA LEY DE NEWTON
La segunda ley del movimiento de Newton dice que
el cambio de movimiento es proporcional a la fuerza motriz impresa y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto,esto es, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.
En términos matemáticos esta ley se expresa mediante la relación:
Donde es la cantidad de movimiento y la fuerza total. Bajo la hipótesis de constancia de la masa y pequeñas velocidades, puede reescribirse más sencillamente como:
que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad distinta para cada cuerpo es su masa de inercia, pues las fuerzas ejercidas sobre un cuerpo sirven para vencer su inercia, con lo que masa e inercia se identifican. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.
Por tanto, si la fuerza resultante que actúa sobre una partícula no es cero, esta partícula tendrá una aceleración proporcional a la magnitud de la resultante y en dirección de ésta. La expresión anterior así establecida es válida tanto para la mecánica clásica como para la mecánica relativista, a pesar de que la definición de momento lineal es diferente en las dos teorías: mientras que la dinámica clásica afirma que la masa de un cuerpo es siempre la misma, con independencia de la velocidad con la que se mueve, la mecánica relativista establece que la masa de un cuerpo aumenta al crecer la velocidad con la que se mueve dicho cuerpo.
De la ecuación fundamental se deriva también la definición de la unidad de fuerza o newton (N). Si la masa y la aceleración valen 1, la fuerza también valdrá 1; así, pues, el newton es la fuerza que aplicada a una masa de un kilogramo le produce una aceleración de 1 m/s². Se entiende que la aceleración y la fuerza han de tener la misma dirección y sentido.
La importancia de esa ecuación estriba sobre todo en que resuelve el problema de la dinámica de determinar la clase de fuerza que se necesita para producir los diferentes tipos de movimiento: rectilíneo uniforme (m.r.u), circular uniforme (m.c.u) y uniformemente acelerado (m.r.u.a).
Si sobre el cuerpo actúan muchas fuerzas, habría que determinar primero el vector suma de todas esas fuerzas. Por último, si se tratase de un objeto que cayese hacia la tierra con un resistencia del aire igual a cero, la fuerza sería su peso, que provocaría una aceleración descendente igual a la de la gravedad.
cuando usted mide lo que está hablando y lo expresa en números, sabe algo acerca de eso, pero cuando no lo puede expresar en números, su conocimiento es pobre e insatisfactorio... "
Ejemplo:
el cohete V–2 El cohete militar V–2, utilizado por Alemania en 1945, pesaba aproximadamente 12 toneladas (12,000 kg) cargado con combustible y solo 3 toneladas (3,000) vacío. Su motor creaba un empuje de 240,000 N (newtons). Aproximando g a un valor de 10m/s2, ¿cuál era la aceleración del V–2 (1) al despegar, (2) justo antes de terminarse el combustible?
Solución Haga que la dirección hacia arriba sea positiva, la dirección hacia abajo negativa: utilizando esta convención, podremos trabajar con números en lugar de vectores. Al despegar, dos fuerzas actúan sobre el cohete: un empuje de +240,000 N, y el peso del cohete cargado, mg =–120,000 N (¡si el empuje fuera menor a 120,000 N, el cohete nunca se levantaría!). La fuerza total hacia arriba es por lo tanto
F = + 240,000 N – 120,000 N = +120,000 N, y la aceleración inicial, de acuerdo a la segunda ley de Newton, es
a = F/m = +120,000 N/12,000 kg = 10 m/s2 = 1 gAsi, el cohete comienza a elevarse con la misma aceleración que una piedra al comenzar a caer. Al irse consumiendo el combustible, la masa m decrece pero la fuerza no, así que esperamos que a se haga aún más grande. Al acabarse el combustible, mg = –30,000 N y tenemos
F = + 240,000 N – 30,000 N = +210,000 N, dando
a = F/m = +210,000 N/3,000 kg = 70 m/s2 = 7 g
El hecho que la aceleración se incremente al irse quemando el combustible es particularmente importante durante los vuelos espaciales tripulados, cunado la carga incluye a astronautas vivientes. Al darle al cuerpo de un astronuata una aceleración de 7 g, este experimentará una fuerza de hasta 8 veces su peso (¡la gravedad aún contribuye!), creando una tensión excesiva (3–4 g es probablemente el límite sin trajes especiales). Es difícil controlar el empuje de un cohete, pero un cohete de varias etapas puede desprender la primera etapa antes de que a se haga demasiado grande, y continuar con un motor más pequeño. De lo contrario, tal y como ocurre con el transbordador espacial y el cohete Atlas original, algunos motores de cohetes se apagan o desprenden, mientras que los otros continúan operando.